The Computational Complexity of Estimating Convergence Time

نویسندگان

  • Nayantara Bhatnagar
  • Andrej Bogdanov
  • Elchanan Mossel
چکیده

An important problem in the implementation of Markov Chain Monte Carlo algorithms is to determine the convergence time, or the number of iterations before the chain is close to stationarity. For many Markov chains used in practice this time is not known. Even in cases where the convergence time is known to be polynomial, the theoretical bounds are often too crude to be practical. Thus, practitioners like to carry out some form of statistical analysis in order to assess convergence. This has led to the development of a number of methods known as convergence diagnostics which attempt to diagnose whether the Markov chain is far from stationarity. We study the problem of testing convergence in the following settings and prove that the problem is hard in a computational sense: • Given a Markov chain that mixes rapidly, it is hard for Statistical Zero Knowledge (SZK-hard) to distinguish whether starting from a given state, the chain is close to stationarity by time t or far from stationarity at time ct for a constant c. We show the problem is in AM intersect coAM. • Given a Markov chain that mixes rapidly it is coNP-hard to distinguish whether it is close to stationarity by time t or far from stationarity at time ct for a constant c. The problem is in coAM. • It is PSPACE-complete to distinguish whether the Markov chain is close to stationarity by time t or far from being mixed at time ct for c ≥ 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of endurance time method in damage assessment of concrete moment frames

Nonlinear Time History (NTH) analysis is currently the most reliable method for estimating structural behavior. Considerable computational demand and complexity of this method may cause difficulty for its routine practical application. Based on the Methodology of Endurance Time (ET) method, it can estimate the nonlinear response of structures with a much lower computational cost. In this resear...

متن کامل

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

Reduction of Computational Complexity in Finite State Automata Explosion of Networked System Diagnosis (RESEARCH NOTE)

This research puts forward rough finite state automata which have been represented by two variants of BDD called ROBDD and ZBDD. The proposed structures have been used in networked system diagnosis and can overcome cominatorial explosion. In implementation the CUDD - Colorado University Decision Diagrams package is used. A mathematical proof for claimed complexity are provided which shows ZBDD ...

متن کامل

Optimized computational Afin image algorithm using combination of update coefficients and wavelet packet conversion

Updating Optimal Coefficients and Selected Observations Affine Projection is an effective way to reduce the computational and power consumption of this algorithm in the application of adaptive filters. On the other hand, the calculation of this algorithm can be reduced by using subbands and applying the concept of filtering the Set-Membership in each subband. Considering these concepts, the fir...

متن کامل

Search Based Weighted Multi-Bit Flipping Algorithm for High-Performance Low-Complexity Decoding of LDPC Codes

In this paper, two new hybrid algorithms are proposed for decoding Low Density Parity Check (LDPC) codes. Original version of the proposed algorithms named Search Based Weighted Multi Bit Flipping (SWMBF). The main idea of these algorithms is flipping variable multi bits in each iteration, change in which leads to the syndrome vector with least hamming weight. To achieve this, the proposed algo...

متن کامل

Optimizing Cost Function in Imperialist Competitive Algorithm for Path Coverage Problem in Software Testing

Search-based optimization methods have been used for software engineering activities such as software testing. In the field of software testing, search-based test data generation refers to application of meta-heuristic optimization methods to generate test data that cover the code space of a program. Automatic test data generation that can cover all the paths of software is known as a major cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1007.0089  شماره 

صفحات  -

تاریخ انتشار 2010